Effect of a synthetic inhibitor of urokinase plasminogen activator on the migration and invasion of human cervical cancer cells in vitro
نویسندگان
چکیده
As a notable feature of malignant tumors, invasion and metastasis are important events in the process of tumor progression. Amiloride, a synthetic inhibitor of urokinase plasminogen activator (uPA), is involved in these events. To evaluate the therapeutic value of amiloride in cervical cancer, HeLa cells were used as in vitro cellular models. The migration and invasion abilities of HeLa cells, in addition to the mRNA expression of matriptase, uPA, uPA receptor and 72 kDa type IV collagenase (MMP‑2), were detected using scratch assays, Transwell chamber assays and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The results of RT‑qPCR demonstrated that the mRNA expression of uPA and MMP‑2 in HeLa cells was downregulated significantly in a dose‑dependent manner when incubated with various concentrations of amiloride for 24 h. The migration distance of HeLa cells was significantly shorter at 6, 12 and 24 h following incubation with amiloride (P<0.01), and there was a positive correlation between cell migratory ability and cellular uPA protein expression level (r=0.955, P<0.01). The number of HeLa cells that penetrated the Matrigel following incubation for 24 h with different concentrations of amiloride decreased significantly compared with the control group, indicating that cell invasiveness was positively correlated with the protein expression level of uPA in the cells (r=0.993, P<0.01). The present study demonstrated that amiloride was able to specifically inhibit the mRNA expression levels of uPA in HeLa cells, and sequentially downregulate the mRNA expression of downstream MMP‑2 in the uPA system, thereby suppressing the migratory and invasive ability of HeLa cells. Therefore, amiloride may be a promising therapeutic target for the treatment of cervical cancer.
منابع مشابه
Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway
Fisetin (3,3',4',7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of ur...
متن کاملInhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics
Objective(s): Various studies have been conducted to reduce the metastatic behavior of cancerous cells. In this regard, ectopic expression of anti-metastatic microRNAs by miR-mimic and miR-restoration-based therapies could bring new insights to the field. In the present study, the consequences of co-transfecting breast cancer cell lines with miR-193b and miR-31 were investigated via invasion an...
متن کاملIn vitro elaboration Mutagenesis and cloning of the PA gene in Bacillus subtilis
Background: The immune antigen of Bacillus anthracis is a protein that can attach to the surface receptor of all human cells. At the surface of cancer cells, there is a receptor that activates the uPA (Urokinase plasminogen) that do not exist in normal human cells. Objectives: The aim of this study was changing the location of the attachment of the PA gene by a dir...
متن کاملIn vitro elaboration Mutagenesis and cloning of the PA gene in Bacillus subtilis
Background: The immune antigen of Bacillus anthracis is a protein that can attach to the surface receptor of all human cells. At the surface of cancer cells, there is a receptor that activates the uPA (Urokinase plasminogen) that do not exist in normal human cells. Objectives: The aim of this study was changing the location of the attachment of the PA gene by a dir...
متن کاملپتانسیل آنتیپلاسمینوژن منوکلونال آنتیبادی در دستکاری دو سیستم فیبرینولیز و آنژیوژنز
Background: Plasminogen has a central role in fibrinolyrtic system can activate through various activators (PAs) to its active form plasmin and perfoem its vital function that is fibrin clot lysis. Furthermore the fibrinolyrtic system plays a major role in angiogenesis. The fibrinolyrtic system activation control cell migration and invasion. In addition to this, plasmin regulates tumor growth. ...
متن کامل